Science Policy

Science Coordinator – Miss Harris

Rationale

Our children are the future of science and we want them to aspire to be our next researchers, microbiologists, palaeontologists or even astronauts. They will go through school with an appreciation of the many directions that their science education can take them in the future. A high-quality science education provides the foundations for understanding the world. Science has changed our lives and is vital to the world's future prosperity, all pupils should be taught essential aspects of the knowledge, methods, processes and uses of science developing transferable skills including problem-solving, reasoning and enquiry.

Science should provide children with a deep understanding of scientific concepts and a range of practical scientific skills which will provide them with a foundation that can be built upon in KS3 and beyond.

Primary science should foster children's curiosity in the world in which they live.

Furthermore, putting those skills into practise through a focus on environmental science will give the children a deeper understanding and appreciation of the world around them. They should be encouraged to care for our planet and the living things around us, understanding their own personal impact on the environment and how best to protect our future.

Introduction

At The Florence Nightingale Academy we are committed to providing all children with learning opportunities to engage in science. This policy sets out a framework within which teaching and non-teaching staff can work, and gives guidance on planning, teaching and assessment. It has been developed through a process of consultation with school staff and governors.

Science is taught from Early Years through to Key Stage 2. Our curriculum uses knowledge of scientific processes and methods, scientific enquiry skills as well as an understanding of the nature of science.

Through science children are encouraged to think scientifically, question the world about them and have an ability to explain processes and concepts by using scientific technical terminology. Children are encouraged to develop a sense of excitement and curiosity about science that in turn will help create scientists for the future.

This policy is a working document, subject to annual review. It is to be read in conjunction with the schemes of work.

What is Science?

Science is a body of knowledge built up through experimental testing of ideas. Science is also methodology, a practical way of finding reliable answers to questions we may ask about the world around us.

Aims

- To encourage the development of positive attitudes to science.
- To fulfil the requirements of the National Curriculum in ways that are imaginative, creative purposeful and enjoyable.
- To deliver clear and accurate teacher explanations and skilful questioning. Providing guidance but at the same time allowing children the freedom to explore as independently as possible.
- To make strong, purposeful links between science and other subjects. Using ICT in a meaningful way to extend their learning (Data loggers, video, photograph and microscopes).
- To enable children to communicate scientific facts, ideas and data effectively with peers and adults, using appropriate scientific language.
- To teach science through the five lines of scientific enquiry: Observing over time; Identifying and Classifying; Pattern seeking; Secondary Research and; Comparative and Fair Testing.
- To find out children's initial ideas so that they understand what they don't know and aren't sure about. This means that when the children have completed their lessons they can look back at their starting points and say "I used to think this ... and now I think that ... because ..." or "I used to think this ... and I still think this because ..."
- To instil in children an appreciation and ownership over their own impact on the environment.

Curriculum

The children undertake a broad and balanced programme following the National Curriculum that takes account of abilities, aptitudes and physical, emotional and intellectual development. Through science the children learn a range of skills, concepts, attitudes and methods of working.

The objectives of science teaching in the school are based on the requirements of the National Curriculum programmes of study for Key Stages 1 and 2.

	Autumn 1	Autumn 2	Spring 1	Spring 2	Summer 1	Summer 2
Year 1	Seasonal	Materials	Animals	Animals	Plants	Materials
	Changes	(1 of 2)	and	and		(2 of 2)
			Seasonal	Seasonal	What can	and
	Which		changes	changes	I see	Seasonal
	season is	What are			outside in	changes
	it?	things	What	How does	my	
		made of?	animal	my body	garden?	What can
			am I?	work?		I make
	Introduct				Identify	with this
	ion to the	Identify	Identify	Identify	common	material?
	four	and name	differen	basic	garden	
	seasons	everyday	t classes	parts of	and wild	Focus on
	with a	materials	of	the human	plants,	working
	focus on	and	animals	body and	how they	scientific
	changes	understan	and their	identify	grow and	ally.
	observed	d their	diets.	which	can be	
	in	propertie		parts of	grouped.	Summer
	Autumn.	S.	Winter	the body		
				are		
				associated		
				to each		
				sense.		
	A	1.1.1	r	Spring	Dlasta	
year 2	Animais	Living	Everyday	Environme	Plants	Working
	including	things and	materials	ntai Unit	L farmada	scientific
	numans	their			How do	any
	\A/hat da	naditats	wnat	riow can l	my plants	
	WINDT DO	ما سماد	can	look atter	grow?	
	to do to	riuw do	be made	my planat?	Observe	
		plants	be made	pianet?	ouserve	a coiontict?
	survive	ana	01?		seeus and	scientist?

Long term plan for Science

	and stay	animals		Focus on	bulbs	
	healthy?	survive?	Suitabilit	environme	growing	Focus on
			y of	ntal	and the	scientific
	Basic	Habitats	everyday	science	conditions	enguiry
	needs of	and simple	materials	and our	needed	types and
	animals	food	for their	impact on	for	working
	including	chains	purpose	the world	healthy	scientific
	humans		F F	around us	arowth	ally
	for health				<u>g</u>	
	and					
	arowth					
Vear 3	Forces	Pocks	Animals	Plants	Pocks	Light
7601 0	and	(1 of 2)	including	Tiants	(2 of 2)	Lighti
	Magnete	(10) 2)	humana	W/by do		How and
	Mugners	How one	numuns		What is a	chodows
		riow are	\4/hat da	some	fossil2	formed
	How do	rocks all	what do	flower2	105511?	i ormea
	magners	alliereni	we need	Tower?	Loomino	by the
	work?	?		Tdon+ifu	Learning	sun?
	F undama	Classifier	to stay	Laentity	about	Deservisio
	Explore	Classifica	neaitny?	the	TOSSIIS	Recognisin
	magnets	Tion and		different	and now	g dark is
	and the	propertie	Nutrition	parts of	they are	the
	propertie	s of	for	plants and	formed.	absence
	s of	rocks.	healthy	the	Soils	of light,
	magnetic		bodies.	processes		how
	materials.			that help		shadows
				them to		are
				grow.		formed
						and what
						is a
						reflection
						•
Year 4	Living	Animals	States	Sound	Electricit	Working
	things and	incl	of		У	scientific
	their	humans	Matter	What's		ally
	habitats			that I	How does	
		What	Solid,	hear?	electricit	How am I
	What is	happens	liquid or		y work?	۵
	happening	to the	a gas?	How		scientist?
	to my	food I		sounds are	Circuits	
	environme	eat?	Changes	made and	and their	Focus on
	nt?		of state	how they	componen	enquiry
		Digestive	including	can change	ts.	types and
	Classifica	systems,	heating,			working
	tion and	food	cooling			scientific
	human	chains and	and			ally.

	impact on	the	evaporati			
	the	importanc	on.			
	environme	e of				
	nt.	teeth.				
Year 5	Forces	Earth and	Propertie	Living	Propertie	Animals
		Space	s and	things and	s and	including
	What	•	changes	their	changes	humans
	makes	What	of	habitats	of	
	things	causes	materials		materials	What
	move?	night and	(1 of 2)	How do	(2 of 2)	happens
		dav?		livina		when I
	Investigat		How do	things	What	arow up?
	ing and	Planets of	I decide	change	happens	9 . ••• • P ·
	learning	the solar	which	over	if I mix	Growth
	about	system	material	time?	two	and
	different	movement	is best?		materials	developme
	forces	of the		l ife cycles	2	nt in
	101 005	earth sun	Group	of plants	•	humans
		and moon	and	and	Reversibl	Hamano
			compare	animals	e and	
			differen	including	irreversib	
			+	humane	11 EVEI 310	
			mataniala	nununs	changes	
			and		How to	
			invoction		Flow To	
			to how		separate	
			te now		mix iures.	
			he heat			
			De Dest			
	C uslution	Linh	Usea.	A	1	
year o	Evolution	Light	Electrici	Animais	Living	working
	ana	I farmada	ту		things and	scientific
	innermanc		\A/h at	numans	Ineir [.]	any
	e	we see?	what		haditats	
		التعامية مسط	changes	How does	\A/hava da	
		Light and	can I	my body	T fit in 2	How am I
	we know	shadows	таке то	WORK?	I TIT IN?	D
	that living		an	1.1	Classifier	scientist?
	Things		electrica	Human	Classifica	F
	cnange		I CIRCUIT?	circulatory	TION	Focus on
	over		Circuit	systems	systems	enquiry
	TIMe?		CITCUITS,	and the		Types and
			now to	impact of		working
	FOSSIIS		draw	litestyle		scientitic
	and		circuit	choices		ally.
	adaptatio		diagrams			
	n		and what			

		happens			
		when			
		compone			
		nts are			
		added or			
		taken			
		away			
Enrichm	National	Big	Science	Internati	World
ent	Tree	Schools	Week	onal	Oceans
Days	Week	Birdwatc	05.03.22 -	Astronom	Day
	28.11.21 -	h	14.03.22	y Day	08.06.21
	06.12.21			07.05.21	
				World	
				Bee Day	
				20.05.22	

Early Years

In Early Years science is taught within the area: 'Understanding the World'. According to the new revised framework the level in which the child is expected to have attained by the early learning goal set below under the strand of 'The World'. The key skills in this area of learning are:

Children know about similarities and differences in relation to places, objects, materials and living things. They talk about the features of their own immediate environment and how environments might vary from one another. They make observations of animals and plants and explain why some things occur, and talk about changes.

Key Stage 1

As outlined in the National Curriculum (2014) the principal focus of science teaching in Key Stage 1 enables children to experience and observe phenomena, looking more closely at the natural and humanly-constructed world around them. They are encouraged to be curious and ask questions about what they notice. Children are helped to develop their understanding of scientific ideas by using different types of scientific enquiry to answer their own questions, including observing changes over a period of time, noticing patterns, grouping and classifying things, carrying out simple comparative tests, and finding things out using secondary sources of information. Children will also begin to use simple scientific language to talk about what they have found out.

Lower Key Stage 2

As outlined in the National Curriculum (2014) the principal focus of science teaching in Lower Key Stage 2 is to enable pupils to broaden their scientific view of the world around them. They will do this through exploring, talking about, testing and developing ideas about everyday phenomena and the relationships between living things and familiar environments, and by beginning to develop their ideas about functions, relationships and interactions. Children will be encouraged to ask their own questions about what they observe and make some decisions about which types of scientific enquiry are likely to be the best ways of answering them, including observing changes over time, noticing patterns, grouping and classifying things, carrying out simple comparative and fair tests and finding things out using secondary sources of information. They will draw simple conclusions and use some scientific language, first, to talk about and, later, to write about what they have found out.

Upper Key Stage 2

As outlined in the National Curriculum (2014) the principal focus of science teaching in Upper Key Stage 2 is to enable pupils to develop a deeper understanding of a wide range of scientific ideas. They will do this through exploring and talking about their ideas; asking their own questions about scientific phenomena; and analysing functions, relationships and interactions more systematically. Children will encounter more abstract ideas and begin to recognise how these ideas help them to understand and predict how the world operates. They should also begin to recognise that scientific ideas change and develop over time. They should select the most appropriate ways to answer science questions using different types of scientific enquiry, including observing changes over different periods of time, noticing patterns, grouping and classifying things, carrying out comparative and fair tests and finding things out using a wide range of secondary sources of information. Pupils should draw conclusions based on their data and observations, use evidence to justify their ideas, and use their scientific knowledge and understanding to explain their findings.

Teaching and Learning

The school uses a variety of teaching and learning styles in science lessons. Our pedagogy is based on research conducted by Rosenshine and his principles of instruction (2012).

Science Delivery Document

Intent	We take the National Curriculum statements and provide an enhanced version of this.
	We map these in a coherent and sequential progression model
	that outlines the knowledge, skills and vocabulary needed at each
	stage that will build to clearly defined end points.
	Teachers take the progression grid and map this into a long-term
	plan for their year group.
	Teachers then plan at a more detailed level the sequencing of
	content to be taught across each unit
Implementation	Ensure that the teachers of the subject have excellent subject
	knowledge, and leadership supports that acquisition of this for
	NQT and non- specialist teachers.
	Subject matter is presented clearly, teachers carefully check
	learning and identify misconceptions, providing direct feedback.
	Teaching is designed to ensure children know more and remember
	more. Science is carefully resourced to ensure we have all the
	specialism and resources required.
Impact	Learners develop detailed knowledge and skills. We check this
	through regular pupil voice and collecting evidence of outcomes
	which we measure against our age base progression grids. Pupils
	are well prepared at each stage to be ready for the next stage
	of learning.

How do ensure that knowledge gained is transferred to working memory into long term memory?

All staff use Rosenshine's (2012) principals in action when planning and delivering lessons.

Strategies identified	What do we expect to see in our Science lessons?
Regular review	Academic or subject vocabulary that has been taught will be modelled throughout teaching and regularly reviewed. Teachers will revisit prior knowledge (previous year group/lesson).
Present new materials using small steps	Science planning ensures achievable and repeated steps are provided to build children's confidence, competence and retention.
Ask questions (Blooms taxonomy)	Questions help children practice new information and connect new material to their prior learning. The teacher will question children around the specific knowledge and vocabulary they have used in this topic as well as others.
Provide models	Expert teachers /peer models identified in the lesson will exemplify the specific skills/knowledge required for the task.
Guide student practice	Teachers will spend more time guiding children's practice of new material. It will be forgotten unless time is given for rehearsal we revisit tasks over and over again, allowing children lots of time to practice. This is always guided and supported by expert teaching.
Check for children's understanding	Checking understanding at each point can help children learn the material with few errors. We would expect to see tasks/skills broken down into very small chunks, with regular assessment checking from teachers throughout.
Obtain a high success rate	In Science, we would expect to see that a skill is successfully taught before moving on. We take our time to achieve consistent success.
Provide scaffolds for difficult tasks	The teacher provides children with temporary supports and scaffolds to assist them when they learn difficult tasks.
Independent practice	Children should have the opportunity to practice regularly and independently to transfer the knowledge into their long-term memory. In science lessons there is opportunity for this.

Weekly and	Children need to be involved in extensive practice in order to
monthly review	develop well connected and automatic knowledge. Weekly
	reviews can take place in science lessons, where teachers
	return to knowledge learned in a previous unit, and following a
	period of forgetfulness the children use that knowledge again.

This is supported by the six effective learning strategies (Weinstein and Sumeracki 2019) to ensure that all of our children at The Florence Nightingale Academy become successful, independent learners who are actively engaged in their own learning.

It is our aim at The Florence Nightingale Academy for the children to develop a deep curiosity for science.

In order to learn about the world around them children must have:

- A curiosity to ask questions.
- Investigative minds to find out answers.

Our principal aim through this pedagogy is to develop the children's knowledge, skills and understanding in science.

We believe in whole-class teaching methods and combine these with enquiry and skills-based investigative activities.

We believe children as part of their Science curriculum should access a variety of activities in lessons such as:

- They have access to, and are able to handle specimens
- They go on visits to museums and places of interest
- They have access to secondary sources such as books and photographs
- Visitors talk about scientific topics and concepts
- They question and create investigations to provide answers
- They review prior knowledge and investigations to build upon previous learning
- They use drama to explain scientific concepts

- They are shown, or use independently, resources from the internet and videos
- They are able to use non-fiction books for research
- They are provided with opportunities to work independently or collaboratively, to ask as well as answer scientific questions.

We recognise the fact that we have children of differing ability in all our classes, and so we provide suitable learning opportunities for all children by matching the challenge of the task to the ability of the child using our differentiated star challenges. We achieve this through a range of strategies which are differentiated by task, expected outcome and/or support from peers or adults.

Based on combining pedagogy taken from Rosenshine's principles of instruction and various metacognition strategies Science lessons should follow the following structure:

1) Review of prior knowledge e.g. low stake quizzes testing scientific vocabulary and concepts. Can be within the topic or recapping previous Science topics covered.

2) Introduce new knowledge and skill for this lesson in small steps taken from Knowledge statement

-Children may need the new knowledge first

-Then introduce skill/activity

-Model using this skill and applying the knowledge (Your thought processes also)

-Asking questions whilst modelling and lots of discussion

3) Children practise and apply lesson skill

-Guided practise first (Class modelling and lots of discussion)

-Children apply skill independently (Scaffolding may be required so all children can successfully apply learning)

-Use of AFL and questioning to check student understanding

4) Evaluate and reflect upon the Scientific skills used to check Student understanding.

-How have we been Scientists this lesson?

-What has been our new learning this lesson?

-How have we been successful learners?

Additionally, throughout the week in morning registration/before end of day/ lining up to check knowledge from lessons is being retained and transferred into the longterm memory.

Each year group undertakes six topics a year combining both scientific knowledge and scientific enquiry skills and these are taught in 75 minute weekly sessions for the half term that the topic is being taught.

Science Curriculum Planning

At The Florence Nightingale Academy, our curriculum is carefully planned to ensure full National Curriculum coverage. Our long-term and medium-term plans map out the skills and themes covered each term for each key stage. These plans define what we will teach and ensure an appropriate balance and distribution of work across each term. Topics are reviewed yearly by the subject leader liaising with staff and SLT.

Every effort is made to ensure that work is differentiated appropriately to meet the needs of all pupils using the school's three-star challenge system. Planning should highlight extension activities for gifted and talented children, specific English as an Additional Language needs and tasks and activities which will engage the interest of pupils with special learning needs, whilst offering them opportunities to succeed.

Planning should also make relevant links to the key skills that are being taught and then annotated on the knowledge statements at the front of each topic.

Assessment and Recording

Assessment is an integral part of the teaching and learning process at The Florence Nightingale Academy. Children will be assessed continually throughout the year to ensure that understanding is being achieved and that progress is being made on their scientific knowledge and understanding of scientific enquiry skills. Teachers assess each knowledge statement following the lesson on our online assessment platform, Insight. Teachers make a judgement using the following statements, 'taught, but not yet understood', 'some evidence but not yet secure', 'objective secured' and 'working at greater depth'. A final judgement is made at the end of each topic on Insight using 'below', 'just below', 'on track' and 'greater depth'. Data is collated every half term in line with the assessment calendar and data is to be collated by the teacher. Marking for science will follow the school's marking policy, this will ensure that when marking science, with a block which will develop mastery or ascertain that the learning objective has been met.

Promoting links with Science and Reading

At The Florence Nightingale Academy, we ensure that we promote a love of reading across all our subjects. We ensure that the children understand how we are always using our reading skills and how this builds on phonic skills taught in EYFS. In our science lessons we access a wide variety of texts that children may need to decode and apply the skills taught in our phonics programme. Non-fiction scientific texts make great linguistic demands through the inclusion of technical vocabulary not always used in narrative works.

Monitoring

Monitoring takes place regularly through samplings children's work, teacher planning, pupil/staff voice and lesson observations.

Roles and Responsibilities

Role of Co-ordinators

- The co-ordination, leadership and development of all aspects of science throughout the primary age range.
- The development and implementation of policies and practices for science which reflect the school's commitment to high achievement and effective teaching and learning.
- Ensuring curriculum coverage, continuity and progression in science for all children.
- The audit, identification and purchase of appropriate resources for science.
- Ensuring that resources are used efficiently, effectively and safely.
- The use of assessment data and other evidence to monitor standards in science and report this to the leadership team and governors.
- To keep staff informed on the attainment and progress of science throughout school.
- Setting expectations and targets for staff and children for children's achievement and the quality of teaching.
- The evaluation of the quality of teaching of science in the school and to use this analysis to identify effective practice and areas for improvement. To take action to further improve the quality of teaching.
- Leading staff meetings in science.
- The co-ordination of high quality professional development as necessary.

Role of Teachers

Class teachers will be responsible for monitoring children's progress through target ladders in science books and for updating school pupil tracker as per the school assessment schedule.

Role of Governors

Governors will be kept informed of the latest developments in school.

Resources

Amongst many text books we have a school set of Collins International Primary Science to support the children's learning. Children develop their skills using ICT such as the internet to research, DVD's and interactive programs used on our touch screen display units.

In order to encourage an investigative approach, the school has a store of equipment to allow simple investigations, observations and measurements to be carried out in small groups.

Visits and first-hand experiences are vital to the understanding of science. Regular educational visits are made by pupils and the local area is a valuable resource for this. Risk assessments are carried out on all visits, including local walks. Visitors with expertise are also invited into school to work with the children, often engaging in a whole school approach, particularly when linked to one of our environmental science days.

	EYFS	Year 1	Year 2	Year 3/4	Year 5/6	Year 6 only
Working scientifically	Pupils should ask questions and comment on aspects of their familiar world	Pupils should ask simple questions and recognise they can be answered in different ways.	Pupils should ask simple questions and recognise they can be answered in different ways including scientific language from the national curriculum	Pupils should ask relevant questions and use different types of scientific enquiries to answer them.		
	Pupils should look closely at similarities and difference	Pupils should use simple equipment to observe closely	Pupils should use simple equipment to observe closely including	Pupils should make systematic and careful observations and, where	Pupils should take measurements using a range of scientific equipment,	

Curriculum Progression

n attanua		ahanaad ayan	annanniata	with increasing	
patterns		changes over	appropriate,	with increasing	
and change		time.	take accurate	accuracy and	
			measurements	precision	
			using standard	taking repeat	
			units using a	readings when	
			nanco of	appropriato	
			runge of	appropriate.	
			equipment		
			including		
			thermometers		
			and data		
			loogers		
	Dunila abaula	Dunila ahaula	Dunila abaula	Dunila sen nlen	
	Pupils should	Pupils should	Pupils should	Pupils can plan	
	pertorm	perform	set up simple	different	
	simple tests	simple	practical	types of	
		comparative	enquiries,	scientific	
		tests	comparative	enguiries to	
			and fair tests	answer	
				quastions	
				questions,	
				including	
				recognising and	
				controlling	
				variables	
				where	
				necessary	
Dunila al 11	Duralla al 11	Dunile et 11	Dunile de L	Durite de la	
Pupils should	Pupils should	Pupils should	rupus snould	Pupils should	
make and	use his or her	use his or her	identify	identity	
explain why	observations	observations	differences,	scientific	
some things	and ideas to	and ideas to	similarities or	evidence that	
occur or	suggest	suggest	changes	has been use	
change	answers to	answers to	related to	to support or	
chunge.	unswers to	unswers to	related to	no support or	
	questions	questions	simple	retute ideas or	
		noticing	scientific ideas	arguments.	
		similarities	and processes.		
		and			
		differences			
		and nattarna			
	D 11 1 11	and parterns.			
	Pupils should	Pupils should	Pupils should		
	gather and	gather and	gather, record,		
	record data	record data	classify and		
	to help in	to help in	present data in		
	answerina	answering	a variety of		
	questions	questions	ways to help in		
	questions.	including	anguaning		
		including	unswering		
		using	questions.		
		secondary			
		sources.			
		Pupils should			Pupils
		be able to			should be
		identify			able to
		aroup and			aroup and
		gi oup unu			gi oup una
		classity.			classity
					things and
					recognise
					patterns.
			Pupils should	Pupils should	
			record findings	record data	
			using simple	and noculta of	
			using simple	unu results of	
			scientific	increasing	
			language,	complexity	
			drawings,	using scientific	
			labelled	diagrams and	
			diagrams keve	labels	
			bar charte and	classification	
			tables		
1	1	1	IUDIES.	KEYS, TADIES,	

			scatter	
			graphs, bar	
			and line	
			graphs.	
		Pupila abould	Pupila abould	
		report on	record and	
		finding from	present	
		enquiries	findinas from	
		including oral	enquiries	
		and written	including	
		explanations,	conclusions,	
		displays or	causal	
		presentations	relationships	
		of results and	and	
		conclusions	explanations of	
			and degree of	
			trust in	
			results, in oral	
			forms such as	
			displays and	
			other	
			presentations.	
		Pupils should	Pupils should	
		use results to	use test	
		draw simple	results to	
		conclusions,	make	
		make	predictions to	
		predictions for	set up further	
		new values,	comparative	
		suggest	ana fair tests.	
		and raise		
		further		
		questions		
				Pupils
				should
				describe
				and
				evaluate
				their own
				ana other
				scientific
				ideas
				related to
				topics in
				the
				National
				curriculum
				(including
				ideas that
				nave
				changea
				using
				evidence
				from a
				range of
				sources.

Knowledge Statements

Our knowledge statements outline curriculum coverage for each topic and ensure full national curriculum coverage alongside a breadth of knowledge and scientific enquiry skills.

They contain information of prior curriculum knowledge that the children have learnt throughout their primary curriculum to enable staff to support the children to make links to their prior knowledge.

Our knowledge statements also help to show links between scientific enquiry through their question approach topic names e.g. What happens to the food I eat?

Knowledge statements also outline key vocabulary to be taught within each topic to help address our whole school focus of narrowing the vocabulary gap.

Knowledge	Plants and Seasonal Changes (Year 1) - In this unit children identify a va	riety			
to be built	of common plants. They learn the basic structure of plants and observe t	them			
to be built	closely.				
upon	Plants (Year 2) – In this unit children explore the lifecycle of a plant and				
	observe their growth. They learn what a plant needs in order to grow an	d stav			
	healthy.	,			
	LO: To explore the requirements of plants for life and				
	courte and how the surger from plants for me and				
	growth and now they vary from plant to plant.				
	 working scientificary skin: identifying differences, similarities or changes related to simple scientific ideas 				
	and processes				
	LO: To investigate the effect of different factors on				
	growth.				
	Working Scientifically Skill:				
	- asking relevant questions and using different types of scientific enquiries to				
	answer them (removing different requirements from growing plants)				
	LO: To identify and describe the functions of different				
	parts of flowering plants.				
	Working Scientifically Skill:				
Year 3	 reporting on findings from enquiries, including oral and written explanations, 				
	displays or presentations.				
	LO: To investigate the way in which water is transported				
	within plants.				
	Working Scientifically Skill:				
	 using straightforward scientific evidence to answer questions or to support their 				
	findings. (for example, putting cut, white carnations into coloured water – why does the flower change colour?)				
	IO: To evolore the part that flowers play in the life cycle				
	of flowering plants (including online including and formation and formation				
	of nowering plants. (including pollination, seed formation and seed				
	Warking Scientifically Skills				
	 recording findings using simple scientific language, drawings and labelled 				
	diagrams				
	LO: To look for patterns in the structure of fruits that				
	relate to how the seeds are dispersed.				
	Working Scientifically Skill:				
	 identifying differences, similarities or changes related to simple scientific ideas 				
Kow	and processes				
Key	plant, growth, vary, lactor, requirement, transported, life-cycle	с,			
vocabulary	function, structure, disperse	I			

Why do some plants flower?

Knowledge Organisers

For students to succeed in a particular area, they must have a foundation of factual knowledge, understand those facts in the context of a conceptual framework and organise knowledge in order to facilitate retrieval and application (Bransford et al. 2000).

At The Florence Nightingale Academy, we use knowledge organisers to support each topic. Through analysing various studies and research, we want them to support our science curriculum in the following way:

- Allow children at the start of the topic to see the learning journey that we will be completing.
- Allow children to make links between previous knowledge that links to the new topic we will be undertaking.
- Outline key knowledge that will be covered throughout the topic.
- Support low-stake quizzes at the start of each lesson through regular retrieval of the information outlined.
- Children to refer to them in lessons to support their understanding.
- Children to refer to the vocabulary outlined on them to help minimise the vocabulary gap our children encounter.